

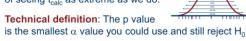
The two-tailed t test formal procedure

- ► Create a null hypothesis and alternative hypothesis: H_A: μ≠μ₀ $\begin{array}{c}
 \mathsf{H}_{\mathsf{A}}: \ \mu \neq \mu_0 \\
 \mathsf{Calculate} \ \mathsf{t}_{\mathsf{calc}}
 \end{array} \quad \boldsymbol{t}_{calc} = \frac{\overline{x} - \mu_0}{SE}$
- ► Compare t_{calc} to various t_{crit} values (i.e., widths of Cls).
- ▶ Determine probability, **p value**, of seeing t_{calc} as extreme as we do
- ▶ Decide to "reject H₀" or "fail to reject H₀" based on the p value. H_0 : $\mu = \mu_0$ consistent with non-small p values. H_A : $\mu \neq \mu_0$ would give us small p values.

The p value

Context: H_0 : $\mu = \mu_0$ and H_A : $\mu \neq \mu_0$

► Determine probability, p value, of seeing t_{calc} as extreme as we do.



Conceptual definition: The p value is the probability of seeing the sample data you do, if the null hypothesis is correct.

Caution about one vs two-tailed tests

Doing a one-tailed test allows you to reject H₀ easier (i.e., less difference between \bar{x} and μ_0), so you must be careful.

Only do a one-tailed test under 2 conditions:

- 1. You only care about one direction
- 2. You have an a priori reason to test in only one direction

You **CANNOT** look at data to choose the direction.

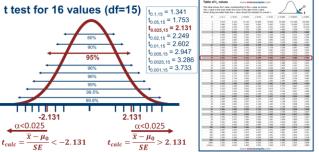
This leads to increased type I errors (i.e., reject a true H₀)

Testing a population mean

We want to know if the population mean is a certain value, μ₀. We can't measure the population. We take a random sample. We calculate the sample mean.

The sample mean is an estimate of the population mean, but sampling error makes it inaccurate.

Q: What is the probability the population mean is μ_0 , based on the sample mean and observed variation?



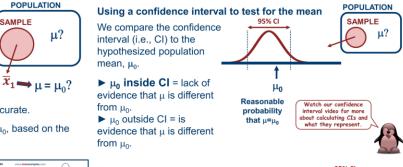
The p value

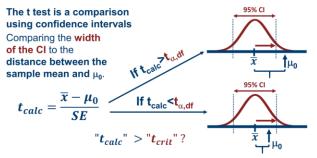
One vs two-tailed tests

Conceptual definition: The p value is the probability of seeing the sample data you do, if the null hypothesis is correct.

is equivalent to ...

The p value is the probability of obtaining the t_{calc} statistic (or more extreme) that you did, if the null hypothesis is correct.



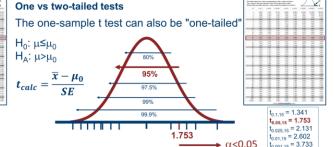


The p value of a test is the probability that the value you see could arise due to sampling error if H₀ is true

If p value small (~0.05), reject H₀ If p value not small, fail to reject Ho

THE MOST USEFUL CONCEPT IN STATISTICS

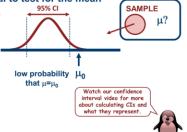
The one-sample t test can also be "one-tailed" H_0 : $\mu \leq \mu_0$



Using a confidence interval to test for the mean

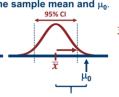
We compare the confidence interval (i.e., CI) to the hypothesized population mean, μ_0 .

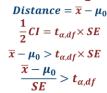
 \blacktriangleright μ_0 inside CI = lack of evidence that u is different from μ_0 .



The t test is a comparison using confidence intervals

We could calculate the confidence interval and see if includes μ_0 . Instead, we calculate the width of half the CI and compare to the distance between the sample mean and μ_0 .





 $||t_{calc}|| > ||t_{crit}||$

Distance $> \frac{1}{2}CI$

POPULATION

The t test practical procedure

- ► Create a null hypothesis and alternative hypothesis H_0 : $\mu = \mu_0$ and H_A : $\mu \neq \mu_0$
- ► Calculate t_{calc} and compare t_{calc} to various t_{crit} values.
- ▶ Determine the p value e.g., t_{calc}=2.8 for df=15. Use table: $t_{0.01.15}$ =2.602<**2.8**<2.947= $t_{0.005.15}$ gives 0.02>p>0.01 Use computer: calculation gives p=0.013
- ► Use the small p value to "reject H₀" H_0 : $\mu = \mu_0$ not consistent with p=0.013<0.05. H_A : $\mu \neq \mu_0$ is consistent with p=0.013<0.05.

Statistically significant

The use of p=0.05 (i.e., 5%) as a threshold for deciding to reject null hypothesis is arbitrary, but is the standard.

Statistically significant: A test has returned a p value less than the threshold and the null hypothesis has been rejected.

- ▶ If a sample mean of 18 is significantly different from μ_0 =20, we reject the null hypothesis that the population mean is 20 (i.e., the mean isn't 20).
- ▶ If a sample mean of 18 is not significantly different from μ_0 =20. we fail to reject the null hypothesis that the population mean is 20 (i.e., no evidence it isn't 20).

Stats Examples.com